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Super-AlfvBnic supersonic aligned magnetogasdynamic flow over a cone of finite 
semi-apex angle, with an attached fast shock wave, is solved numerically. We 
obtain ‘almond curves’ in the plane of magnetic induction vector variation, 
analogous to Busemann’s ‘apple curves’ for supersonic cone flows, to describe 
the flow field near the cone. Total surface pressure coefficients, current and 
vorticity distributions are presented. A closed-form solution of the flow is 
obtained when a switch-on shock occurs. 

1. Introduction 
The basic problem of magnetogasdynamic flow over a wedge has been studied 

by Kogan (1959), Cabannes (1963), Chu & Lynn (1963), Mimura (1963) and 
Pack & Swan (1966). It serves to illustrate various important shock-wave 
properties but gives plane current and vorticity of infinite extent, as well as 
uniform current-free flow away from the shock. A physically more realistic and 
basic problem in hyperbolic aligned magnetogasdynamics is the flow over a semi- 
infinite non-conducting cone. This is the simplest axisymmetric magnetogas- 
dynamic flow in which the current and vorticity sheets are closed, while its 
theoretical predictions can readily be subjected to concrete experimental 
verification. 

Sakurai (1962), who numerically investigated the aligned magnetogasdynamic 
flow over a non-slender cone, obtained mainly non-physical solutions with 
unstable attached shocks and singular flows. Bausset (1963) has obtained first- 
order perturbation solutions for aligned magnetogasdynamic flow over thin 
cones; however, his solutions are valid only for super-AlfvBnic flows and he 
examined shock behaviour only. 

This paper presents numerical solutions to the exact equations of motion for 
aligned super-Alfvhic hyperbolic flow over a semi-infinite cone of h i t e  semi- 
apex angle, at zero incidence with an attached fast shock wave. The Taylor- 
Maccoll (1933) solution for supersonic cone flow is contained as a special case. 
The necessary shock properties and the conical flow equations are given in 5 2. It 
is shown that no conical sub-AlfvBnic flow solution exists because of the appear- 
ance of an ‘embedded characteristic surface ’ in the flow, while super-Alfvhic 
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18 L. A .  Bertram and Y .  M .  Lynn 

supersonic flow solutions always exist. Numerical solutions for super-Alfvknic 
supersonic flow over a cone are presented in 3 3. I n  addition t o  these numerical 
solutions an exact solution is obtained when switch-on shocks occur. 

2. Equation of motion and shock waves 
The equations of motion for steady flow of 

perfect gas with the magnetic induction vector 
vector q+ everywhere are 

v * (p+q+) = 0, 

a non-dissipative conducting 
Bf aligned with the velocity 

v x (( 1 - $42) q+} = 0,  

$q+2 + yp+/(y - 1) p+ = constant on each streamline, 

p+/p+y = constant on each smooth streamline, 

( 2 . 2 )  

B+ = a+p+q+, (2.3) 

(2.4) 

(2.5) 

A 

0 1 .o M 

Figure 1. A-M diagram. y = 5; 1 1 1 ,  hyperbolic upstream flow (A2  > 0);  E ,  evolutionary 
and thermodynamically admissible shock waves; ---, A2 = (y+ 1 ) M 2 / [ 2 +  (y-  1)M2]. 

where the superscript + denotes all physical variables, a+ is a constant on each 
streamline, andp+, p+ and y are, respectively, the density, pressure and adiabatic 
exponent of the gas. The square of the AlfvBn number, A2, is defined by p+2/b+2, 

where b+2 = Bf2/(pp+) is the square of the AlfvBn-wave speed and p is the con- 
stant permeability. Taniuti (1958) and Resler & McCune (1959) have shown that 
(2.1)-(2.5) are hyperbolic if and only if the quantity 

A2 = (M2-  1) (A'- l)/(A'+M'- 1) 

is positive. This is illustrated in the A-M diagram in figure 1, where M is the 
Mach number q+/a+, a+ = [(ap+/ap+),+]* being the gasdynamic sound-wave 
speed. This behaviour is also easily seen from the characteristic locus, first illu- 
strated by Priedrichs & Kranzer (1954,1958), as shown in figure 2 .  Two different 
systems of parametric expressions for this locus were given by Baser & Fleishman 
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(1959) and Weitzner (1961); Lynn (1962) has obtained a single equation to 
describe this characteristic locus. Standing waves (i.e. the tangents to the 
characteristic locus (McCune & Resler 1960; Sears 1960) from the terminal of the 
vector -9) exist only for fast hyperbolic flow, A > 1, M > 1, and for slow 
hyperbolic flow, A < 1, M < 1, A2 + M2 > 1. In  particular, it is clear from figure 2 
that the fast waves are oblique and that the flow speed exceeds both AlfvBn- and 

(4 (b) 
FIGURE 2. Characteristic locus in aligned flow (schematic). (a) Fast standing waves in 
super-Alfvthic supersonic flow. ( b )  Slow standing waves in sub-Alfv6nic hyperbolic flow. 

-9- 

FIGURE 3. Region of influence (horizontal hatching) and domain of dependence 
(vertical hatching) of a point P in sub-Alfv6nic hyperbolic flow. 

sound-wave speeds; thus, the upstream flow of fast waves is undisturbed. On the 
other hand, slow waves are obtuse (upstream-facing) and may have disturbed 
flow preceding them for the incompressible case as suggested by Stewartson 
(1960), since both wave speeds exceed the local velocity. In  fact, in slow hyper- 
bolic flow, the ‘region of influence’ and ‘domain of dependence’ of a point P 
overlap as shown in figure 3, where the flow variables at  any point in the doubly 
hatched region must both depend on and influence the values a t  P. The inter- 
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dependence is qualitatively that of a system described by elliptic equations of 
motion. 

Let B+, and B+ denote the magnetic induction vector ahead of and behind the 
shock wave respectively. We define B = IB+l//B&l = B+/Bi and 5 = cosg, 
where g is the angle between the vectors B: and B+. From the system of conser- 
vation laws governing state variables across a standing magnetogasdynamic 
shock wave in steady flows, Lynn (1971) has obtained for aligned fields the 
equation for the magnetic induction polar (i.e. the magnetogasdynamic shock 
polar given in terms of magnetic induction polar variables B and g): 

MLB(B2- 1) (B - < ) 2 +  (A: - 1) {(B - 6 )  (BC- 1) [M2,(2 -7) B(B - c )  
+ (2A2, +yX2,)(& l)] + E (  1 - p) [ 2 A 3  1 -M2,)B(B -5) 
+ (y  + 1) M2,(A2, - 1) (P-  2B< + l)]) = 0. (2.6) 

The graph of ( 2 . 6 )  was first obtained by Kogan (1962) by numerically solving the 
system of conservation laws. It admits the simple and useful geometrical relation 
that the line connecting the point (1,O) and the terminal of the vector B = B+/Bi 
immediately gives the shock wave inclination as characterized by the angle /3 
measured from the direction of B i ,  as well as that of qz. For the super-Alfv6nic 
supersonic upstream flows considered here, the shock polar in the B, (T plane 
satisfies both the entropy non-decrease condition (Lust 1955; Friedrichs & 
Kranzer 1954, 1958; Ericson & Bazer 1960) and the evolutionary condition 
(Akhiezer, Lyubarskii & Polovin 1958) if and only if (Lynn 1971) 

E < >  1. 

This excludes all trans-Alfvhic shocks, which are obtuse-angled and non- 
evolutionary; only acute-angled and fast shocks are admissible. Again these 
results may be obtained with considerable effort from Bazer & Ericson (1962). 
Depending on whether the shock wave with /3 = in is a pure gasdynamic 
normal shock or a switch-on shock, we may classify the fast-shock polars into 
two distinct types. For aligned fields, the shock wave with ,8 = $n, and hence 
Bc = 1, corresponds to the special case with a normal upstream magnetic induc- 
tion vector, as well as normal upstream velocity vector. Setting B = l-’ in (2.6) 
gives either 

(T = 0 ,  (2.7 a)  

or tan2 cr = (y  + 1) (A& - 1)  (1 - A2,/A2,), ( 2 . 7 b )  

where A,  = [ ( y+  l)/(y- 1 + 2/M2,)]3. Since A ,  > 1 for fast shocks, we obtain 
from (2 .7  b )  that the angle (T is real and non-zero only if 

A, > A ,  > 1, (2.8) 

which corresponds to a switch-on shock. We use condition ( 2 . 8 )  to define ‘strong 
field’, as shown in figure 1; the condition also characterizes the upstream states 
for which switch-on shocks occur. The condition has been derived by Urashima 
& Morioka (1966), using a different method, and it can also be obtained from the 
results of Bazer & Ericson (1962). Equation (2 .7  b)  can also be obtained immedi- 
ately by setting s = 0 in either equation (C 26) or equation (24) of Lynn (1966), 
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which hold for standing magnetogasdynamic shock waves in general non- 
aligned flows (the notations E2, Mqllc, and k, in the latter reference corresponding 
respectively to our variables tan2 u = B2 - 1, A2, and M",AZ,). Thus the complete 
set of solutions for a switch-on shock is immediately available by taking a simple 
limit of the solution given in Lynn (1966). I n  particular, we set s = 0 in equation 
(C 24) of Lynn's paper and get p = A%, which yields 

A '=  1 (2.9) 

since A2, = FA2 follows from (2.3). Equation (2.9) shows that the flow behind 
a switch-on shock is always AlfvBnic. From (2.4) and (2.7b) 

1 
jp- 1 = =[(y+2)A$- 2B2A,2 ( y +  1) (A:+ 1) A2,+yA!], 

which indicates that flow behind a switch-on shock can be either subsonic, if 

A, > A, > Ad, (2.10 a) 

or supersonic, if Ad > A,  > 1, (2.10 b)  

where Ai=A,2  

The magnitudes of the jumps in all thermodynamic variables decrease mono- 
tonically with increasing field strength for the switch-on shock. 

In  contrast to the inequality (2.8), consider the case of A ,  > A, > 1, which is 
used to define 'weak fields ', as shown in figure 1. The only other solution possible 
is u = 0 in ( 2 . 7 ~ ) ;  this corresponds to a pure-gasdynamic normal shock wave 
(Lynn 1966; Urashima & Morioka 1966). Since A2 = A2,/F = A$/A: > 1 in our 
case, we conclude that the flow behind a gasdynamic normal shock is always 
subsonic and super-Alfvbnic. The strong-field polar is simply a portion of the 
typical weak-field polar truncated at  the normal shock - see figures 8 and 9 for 
typical polars of each type. 

Now, writing (2.1)-( 2.5)for a homentropic conical flow in spherical co-ordinates 

(figure 4, gives aa/ae = K cos (a - 8)  sin u / ~  sin 0, (2.11) 

(2.12) dq/d6 = q(A2- 1)sin (a-8)sinu/(A2H2EsinB), 

where K = (A2+M2-1)/A2M2 = (l+hZ)-l, E = sin2(cr-8)-~, 

A2 = AZ/p, M 2  = q2p/p, 
p = {H[1+ =&(? - 1) (M2, - @)]}"(7-'), 

p = pY/H. (2.13) 

In  terms of the dimensionless variables 

€3 = B+/(ypp&)t = (Jf,/A,) (B+/B&) = pq/A,, 

P = P+/P,, q = sflait P = P+/P,, 

and H = p l p ~  = exp [(sf - s2)/cw], where S+ is the specific entropy of the gas and 
c, is the specific heat at constant volume. The current density 

j = V x B = j+L+/(yp,+/,u)& 

and vorticity c = j/A, = c+L+/u& 
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may be non-dimensionalized by any length L+ since the non-dissipative conical 
flow has no characteristic length. The semi-infinite cone boundary-value problem 
now consists of finding solutions to (2.11)-(2.12) which are subject to  the 
boundary condition 

48,) = e c ,  (2.14) 

where the subscript c refers to the cone surface, and of finding a shock angle p 
such that relation (2.6) is satisfied a t  8 = p .  

The equations of motion, (2.11) and (2.12), will be singular whenever E 
vanishes; this occurs for 

(2.15) sin2 ( a - 8)  = K = sin2 w* 

if and only if the inclination (a-8) of the vector q to a ray 8 is characteristic, 
i.e. equal to &, where the ri: superscripts denote acute and obtuse roots of (2.15) 
respectively. Since it can be shown from the shock relationships that a stable 
compressive shock lies between the upstream and downstream characteristic 
inclinations, w, - a < /3 - a < w ,  evidently the fast hyperbolic shock ‘cuts off’ 
the downstream characteristics, and E is negative just behind the shock. Since 
E is also negative on the cone surface by (2.14) and has no zeros between shock 
and cone (Bertram 1969) the equations are nowhere singular in a fast hyperbolic 
flow. 

For slow hyperbolic flow with obtuse shock angles, E is positive just behind 
the shock, but (2.14) again requires E(8,) < 0. Thus E vanishes somewhere 
between the shock and cone, and the slow hyperbolic flow always has an 
‘embedded characteristic’ lying on some conical surface 8 = 8”. It can be shown 
that there is no continuous solution across this surface unless the downstream 
flow is uniform and parallel to the axis; this flow would consist of uniform flow, 
terminated by a shock, followed by a non-uniform conical flow and, downstream 
of 8*, a uniform flow again, with no cone downstream of the shock. Such a flow is 
non-physical, so no sub-Alfv6nic hyperbolic conical flow can exist. 

I n  summary, despite the fact that the sub-Alfv6nic (slow) shock waves satisfy 
the evolutionary condition, which is necessary but not sufficient to guarantee 
physical existence (see, for example, Lynn 1966), the cone boundary-value 
problem with attached shocks in this case has no solution if the downstream flow 
is hyperbolic. Thus Sakurai’s (1962) numerical results shown in his figure 7 
(corresponding to point 1 of his figure 1) apparently result from numerical error 
since they are slow-hyperbolic flows, while those in his figure 8 (corresponding 
to point 2 in his figure 1) all have non-evolutionary shocks, as do all of those in 
figures 10 and 11 (corresponding to points 6 and 7) with obtuse shock angles. 
These latter are trans-Alfvenic shocks. 

3. Numerical solution for flow over a non-slender cone 
To obtain numerical solutions to the cone boundary-value problem, we solve 

(2.11)-(2.14) by converting to an initial-value problem. This is done by specifying 
A,, M,, y and the shock angle p ,  then solving the shock relations for initial values, 
and integrating until (2.14) is satisfied (see appendix for further detail). 
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Solutions were obtained in the groups given in table 1, with y = + in all cases; 
these are shown in figure 5. 

The resulting solutions differ from gasdynamic conical flow because there is 
vorticity and current present, and because switch-on shocks appear in the 
strong-field case. Current density and vorticity are related by 

j = V x  B = V x ((A,/AZ)q) = A , V x q  = A,< = j (r ,O),  (3.1) 

Fixed upstream state with different values 
of ,!?, hence different values of 6, 
Series 4: A ,  = M ,  = 2, w', < 
Series 5: A ,  = 1.1, M ,  = 2, ~2 < p < &T 

Fixed 6, = 5" 

Series 1: A f ,  = 2, 1.0 < A ,  < 20 
Series 2: A, = 2, 1.1 < M ,  < 20 
Series 3:  1.05 < A ,  = M ,  < 20 

< Qr 

TABLE 1 

FIGURE 4. Super-AlfvBnic supersonic cone flow. 

where r is the cylindrical co-ordinate in figure 4 and equations ( 2 . 2 )  and (2.3) 
have been used. Now, 

j(r,O) = [ ( l / r ) p q s i n 2 ( ~ - O ) s i n ~ / ( 2 A , E ) ]  eb = (l/r)j(0)eb, (3-2) 
eb being the azimuthal unit vector. Altogether, the following currents are 
present. 

(i) Shock current sheet: J, = n, x (B, - Bt,,,); current/length; positive azi- 
muthal sense. 
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(ii) Flow current density: j ( r ,  8) given by (3.2); current/area; positive azi- 
muthal sense. 

(iii) Cone-surface current sheet: J, = n, x B,; current/length; negative azi- 
muthal sense. 
n, and n, refer to the unit vector normal to the shock and cone respectively. 

Pack & Swan (1966) have identified the cone-surface current sheet as a degenerate 
shock of non-aligned flow. 

-- 
0 1.0 2.0 20 

FIGURE 5. Input for numerical solutions (not to scale). ---, series 1; 
, series 2; ----, series 3; 0 ,  series 4; ., series 5. 

The level lines of j(r, 0) are shown for (Am, Ma, y )  = (2-0,2.0, $) in figure 6 for 
a typical weak shock, /3 = 4 2 O ,  in the upper half and for a typical strong shock, 
p = 89-5", in the lower half of the figure. The total current J flowing between 
two such level linesj, 6 lj(r, B)l 6 j, is 

where R = r/sin B = the spherical radial co-ordinate. The total current between 
each pair of level lines in either half of figure 6 is twice as large as that between the 
next pair of level lines toward the apex. 

The current sheets in the shock and on these cones are, respectively, 0.01918 
and - 1.077 for the weak shock, and 0.02617 and - 0.9629 for the strong shock. 
Thus, everywhere except in the shock itself, the weak-shock solution has the 
more intense currents and distributes them more uniformly throughout the flow. 
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In  the case of a switch-on shock (2.11) and (2.12) may be solved explicitly. 
Since A = 1 just behind the shock, 

dq/d8 = q( A 2  - 1) sin ((r - 0) sin I T / A ~ M ~ E  sin 8, 
da/dO = - sin +in 8 cos (IT - 0). 

(3-3) 

(3.4) 

Weak sho-', 

FIGURE 6. Current density in super-Alfv6nic supersonic cone flow. 

Continued differentiation of (2.12) shows that dnq/dOn = 0 for A = 1, so the fact 
that A = 1 at one point on a streamline implies that q is a constant on the stream- 
line, unless a shock cuts the streamline. However, a shock with Alfvhic upstream 
conditions must be a switch-off shock (Friedrichs & Kranzer 1958) and the con- 
verse is also true (Lynn 1971). Since switch-off shock angles are always obtuse 
(Bazer & Ericson 1962), which would imply intersecting shock waves and non- 
conical flow, we conclude that the entire region behind the shock has A = 1. 

The solution to (3.3) and (3.4) is then 

q = constant = p,'& + ( y+  1) (1 - 1/A$) (1/A2, - 1/Af)]4, (3.5) 

(3.6) 

f(a, 8) = constant = cot O/sin IT +In [( 1 + cos IT)/sin IT] 

= fV,, 8,) = f(m0, iw, 
where (3.5) follows from the shock solutions and (3.6) from integration of (3.4). 
Each level line off(a, 0) in the  IT^ 8 plane is a solution curve; these are shown in 
figure 7. The particular level line for a given problem is chosen by evaluating f 
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either on a given cone surface or by calculating a(&r) from ( 2 . 7 b )  when the 
upstream state is given. 

The analogue to Busemann's 'apple curve' (Busemann 1929) may be constructed 
in the magnetic induction plane, with points on the shock polar for a fixed A,, 
M, and y mapped onto points of the 'almond curve' as shown in figures 8 and 9, 

e 
FIGURE 7. Alfvenic cone flows. 

where ' cone-flow isentrope ' refers to a solution of (2.11) and (2.12). Weak- and 
strong-field forms of the almond curve, like those of the shock polars, are respec- 
tively open and closed curves, owing to the evolutionary criterion. 

Figure 8 displays the shock polar and almond curve for a typical weak-field 
case, series 4. On the polar, each a(/?) corresponds to both a strong- and a weak- 
shock solution, separated by the point a = amax. When the shock angle here is 
larger than 73", the intense shock will produce sonic transition; i.e. N(p)  < 1 for 
p > 73", so (2.11) and (2.12) are elliptic for the strong-shock branch of this polar. 
Similarly, on the almond curve eaoh 0, has two solutions for 0, < O,,,,,. The 
strong-shock solution here has the entire disturbed flow elliptic because of the 
shock-produced sonic transition. The weak-shock solution is either all fast hyper- 
bolic or has an embedded elliptic region from the cone surface out into the flow, 
because the combined shock and isentropic compression produces M, < 1 for 

> 69". Although such embedded elliptic regions have been observed experi- 
mentally in gasdynamic cone flows (Solomon 1954) their stability in magneto- 
gasdynamic flow is unknown. 

The strong-field polar and the almond curve for series 5 are shown in figure 9. 
For this polar A ,  < A,, so all flows are supersonic and super-Alfv6nic behind 
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0.80 

0.60 

R 

0.40 

0.20 

0 
0.65 0.80 1 .00 1.20 1.40 

Be 
FIGURE 8. Weak-field almond curve. (A,, M,, y )  = (2.0, 2.0, t ) .  

-, shock polar; . . . . . - ,  cone-flow isentrope; ---, almond curve. 

1.00 * 

50 

B, 
FIGURE 9. Strong-field almond curve. (A,, M,, y )  = (1.1, 2.0, g). 

- , shock polar; - . . . - . , circular cone-flow isentrope; ---, almond curve. 
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the shocks, except for the switch-on, which has A(P) = 1, M ( P )  > 1. The resulting 
almond curve has M, > 1 at all points and ends at  the switch-on cone-flow 
solution, which has the maximum cone angle at which a shock may remain 
attached for this A,, M,, and y .  The switch-on cone-flow isentrope is circular 
because q = constant implies that p, B = constant, according to (2.3) and (2.4). 
Note that the shock-isentropic compression of any cone flow is incapable of 
producing AlfvBnic transition because a shock can at  most reduce A to unity and 
no isentropic compression can then follow because of (3.3), which also requires 
that a smooth streamline has A = 1 everywhere or nowhere on it. This is in 
contrast to the sonic transitions occurring in the weak-field cone flows. 

0.05 

0.04 

0.03 

----- 
Gasdynamic hypersonic limit 

0.02 

0.01 

0 
1 5 10 15 20 

*a, Ma 

FIGURE 10. Pressure coefficient for a 5' cone. -, A ,  = 2 ;  
, A ,  = M,;  ---, M ,  = 2 ;  0, computed point. 

The remaining numerical calculations, series 1-3, were made with 8, fixed 
at  5"; the influence of A ,  and M, on the total pressure coefficient 

is displayed in figure 10. In  all calculations only the weak-shock solution was 
calculated. The cone angle was controlled to only four significant figures because 
the numerical error analysis in the appendix indicates that this is the precision 
of the shock-to-cone integration. 

The curve in figure 10 for fixed field strength A ,  = 2 is of the same form as 
that from gasdynamics, which includes the vertical tangent where it joins the 
strong-shock solution branch near transonic conditions. However, C, reaches 
a non-zero asymptotic value as H, becomes large unlike the gasdynamic case. 
Note that the curve in figure 5 on which these upstream states lie approaches the 
strong-field boundary A ,  = A ,  at large M,. At these N, values, C, is independent 
of N,; the flow, like the shock, is dominated by the field as A ,  approaches A,. 
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The curve in figure 10 for a fixed M, = 2 plainly shows that increasing field 
strength decreases C,, just as the switch-on shock pressure ratio decreases at 
stronger field strength. The decrease in C, is smooth from A, = co down to 
A,,switch-on, at which point the nose shock is a switch-on shock; at  Aw,switch-on, 
(2.13), (3.5) and (3.7) give 

Cp,switch-on = 2(1 - l/A%,switch-on). (3.8) 

For slender cones A,,sw,tch-on is very close to unity and, according to (3.6), 

A,,switch-on N 1 + 
The final curve in figure 10, A, = M,, includes values given in figure 5 from the 

gasdynamic hypersonic limit down to the field-dominated double transition at 
A ,  = M, = 1. ‘Field-dominated’ refers to the fact that the curve tends towards 
zero as transition is approached like the constant N, curve, rather than turning 
upward as the fixed field-strength curve does. 

for 0, = 5”, which will lead to C,,switch-on 2: 4 x 

One of us (L. A. B.) gratefully acknowledges the financial support of NDEA 
Title I V  fellowship and of Ford Foundation during this work, and partial support 
by the Engineering Research Institute. 

Appendix. Numerical stability and error 
The initial-value problem [equations (2.1 1)-(2.14)] is integrated from shock to 

cone in preference to forward integration in order that the maximum precision 
of the variables occur in the region where the sensitivity to error is greatest - at 
the shock wave, when E and cr are both minimum. The program for this integra- 
tion begins by inversion of the shock relations with a Newton-Raphson method. 
This solution is specified to have eight significant figures. A fourth-order Runge- 
Kutta integrator, with variable step size chosen so that the two mid-interval 
estimates of the derivatives match to is then used to integrate until the 
boundary condition is satisfied. 

Karim (1966) has analysed the stability of this integrator when applied to 
a system of equations with a fixed step size. Stability is guaranteed if AOei falls 
into a particular region of the complex-e, plane, where ei are the eigenvalues of 

evaluated in (8n-l, On), where primes indicate d/dO. 
The partial derivatives indicated are 

au‘/ag = [-tan(cr-O)+cotcr-sin2(a-O)/E]~’, 

aqi/ag = [cot (g - 8)  +cot - sin 2(g-  o) /E]  q’, 

aCr‘/aq = [ K l S h 2  (g- O)/KE] d, 

where K~ = a K / a q  = - [2N(A2- 1 ) + M 2 ( M 2 -  1)]/(A2M2q), 
N = 1++(y-- l )M2.  
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When the ei values are real, the stability interval is 
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-2 .785. . .  c A&, < 0 (i = 1,2) .  (A 2) 

It can be shown that the partial derivatives in (A 1) have the same behaviour 
for any super-Alfv6nic flow, so the stability analysis was carried out only for the 
typical case (Arn, M,, y, ,8) = (5,2,  +, 31.966568'). It is found that the eigenvalues 
are real, negative and of order one except near the shock, where both complex 
values, with real and imaginary parts order ten or less, and large values of 
different signs, appear. The resulting small 0(10-3) values of A8e, imply an 
essentially neutrally stable integration over most of the interval, while the mixed 
signs near the shock wave leave the stability ambiguous; both of these statements 
are true regardless of the direction of the integration. 

For a stable integration, the error E, a t  the nth step is bounded by 

4 (AO,. -1 
E n < -  c -  

[o--l v! ] R, 

where R is the difference between round-off error and truncation error, due to the 
method of integration. With the nearly neutral integration it may be inferred 
that the error is of this order. Conservatively taking R to be 0(10-5), that is, the 
order of the mid-interval derivative difference, and noting that AOJ,, = O( 1) at 
worst, (A 3) gives an error of O( w5). This estimate is confirmed by comparing 
runs with all inputs fixed except the minimum step size; when lAOminl < $ 
results agree to four significant figures. 
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